

MCA-2

Seat No.

M. Sc. (ECI) (Sem. II) (CBCS) Examination April / May - 2018

Paper - 6 : Advanced Digital Electronics

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

- 1 Answer the following: (Any 7 out of 10) $2\times7=14$
 - (1) Write the count sequence for MOD 4 Ring counter.
 - (2) List the types of Shift Registers.
 - (3) For presettable and clearable J–K FF with active high J-K inputs and active low preset–clear inputs, what would be the logic status of Q output when
 - (A) J = 1, K = 1, Preset = 1, Clear = 0
 - (B) J = 1, K = 0, Preset = 1, Clear = 1
 - (4) Write the number of flip flops required to construct
 - (A) MOD 6 Ring Counter
 - (B) MOD 12 Binary Counter
 - (C) MOD 12 Johnson Counter
 - (D) BCD Counter
 - (5) Give at least one IC type and number for each
 - (A) 8 bit D/A converter
 - (B) 4 bit binary ripple counter
 - (6) Write the truth table of S–R Flipflop. (Active high)
 - (7) Which are the inbuilt MODs in IC 74293?
 - (8) Write the PROS & CONS of Sigma–Delta A/D converter. (2 points each)
 - (9) State true or false:
 - (A) According to Nyquist theorem, the sampling rate should be at least twice of the input signal.
 - (B) Johnson counter always produces Square wave.
 - (10) Two T type flipflops are in cascaded arrangement. If the input frequency of FF1 is 10 MHz, what is the output frequency of FF2?

MCA-2] 1 [Contd....

2	Ans	wer the following: (Any Two out of Three from	14	
	a, b	o, and c)		
	(a)	Explain FUSE and ANTIFUSE as some programmable	5	
		interconnect technologies.		
	(b)	Draw block diagram of 12bit BCD input D/A converter.	5	
		If the step size is 5mV, determine the full scale output.		
	(c)	Write the truth table of Full adder. Implement it	5	
		using suitable PROM.		
	(d)	Compulsory question	4	
		There is a Decimal to BCD priority encoder, active		
		LOW(D ₉ has the highest priority). The outputs are		
		A,B,C where $A = MSB$ and $C = LSB$. Determine the		
		logic status of the output bits for the following cases:		
		(A) All inputs are in logic "0" states.		
		(B) D_1 to D_5 logic "0" states and D_6 to D_9 logic "1" states.		
		(C) D_9 is logic "0" states others are unknown.		
		(D) If the input bit stream is 1011011001, with		
		extreme left is D_0 and extreme right is D_9 .		
3	Ans	wer the following:	14	
	(A)	For the following multistage counters arrangement,	5	
		explain and find the $F_{ m OUT}$.		
	10N	MHZ MOD 10 BINARY COUNTER 5 BIT RING COUNTER 5 BIT JOHNSON COUNTER COUNTER		
	(B)	Explain Flash type A/D converter in detail.	5	
	(C)	Write the difference between PLA and PAL.	4	
		\mathbf{OR}		
	(A)	Explain in detail MOD 4 counter with decoding gates.	7	
	(B)	Explain in detail Master – Slave flipflop.	7	
4	Ans	Answer the following:		
	(A)	Design and explain R - S, Flipflop with active LOW	7	
		inputs.		
	(B)	Draw the internal architecture of 16×4 PROM.	7	
MC	A-2]	2 [Contd		

- Answer the following: (Any Two out of Four)
 (A) Explain the timing parameters of flipflop.
 (B) Design and explain 4 bit BI DIRECTIONAL shift register.
 (C) Design and explain in detail 4 bit Johnson Counter.
 (D) Implement the following Boolean expression using PLA
 - (D) Implement the following Boolean expression using PLA $F_1(A, B, C, D) = \sum (1, 2, 3, 6, 7, 11)$ $F_2(A, B, C, D) = \sum (4, 8, 9, 12, 13, 14)$

MCA-2] 3 [50]